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Abstract: Beran Instruments Limited have been monitoring induction slip motors for over 20 years in 

high electrical noise environments.  Due to the high-temperature environment of certain customer 

installations, integrated electronics piezo-electric (IEPE) sensors are not employed, and charge sensors 

are installed to monitor the condition of the motors.  Over the past 20 years, Beran have used a variety 

of techniques, including the development of specialist isolated analogue signal conditioning 

amplifiers, to enable the true vibration signals that occur around the drive frequency (which is coupled 

to, and therefore affected by, the mains frequency) to be visualised. 

 

Beran Instruments Limited undertook a research and development programme, Machinery Health 

State Detection (mSTATE) supporting Future Net Zero Energy Generation. The goal of the programme 

was to develop a new capability to subtract electrical noise from sensor signals and was conducted in 

partnership with the University of Bristol and EDF Energy Torness Nuclear Power Station, with funding 

from the United Kingdom’s innovation agency, Innovate UK.  

 

The mSTATE project delivered a novel algorithm that allows complete subtraction of 50 Hz mains 

frequencies from the charge sensor signals allowing, for the first time, our end users, and future 

customers the ability to visualise the true vibration signals and the ability to trend machine health 

over time without the use of specialist and expensive analogue signal conditioning systems. 

 

This paper outlines the history and development of condition monitoring of induction slip motors at 

Beran Instruments, and how the mSTATE project resulted in a new approach to subtract 50 Hz noise 

from accelerometer signals using the power of modern signal processing and data architectures. 
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Introduction 

 

Existing nuclear power generation operated by EDF Energy in the UK uses Advanced Gas-cooled 

Reactors (AGRs) [1].  Torness nuclear power plant produces low carbon, reliable and safe baseload 

electricity generation 24 hours per day, 365 days a year.  Torness power station has two nuclear 

reactors each driving a steam turbine generator unit.  The operational aim is to generate long-term 

electricity, refuelling the reactor whilst operational.  Major service and inspection intervals are 

performed every three years, resulting in long operational service of complex key critical 

infrastructure and the necessity to use condition monitoring systems to understand plant operational 

behaviour. 

 

Each reactor has eight gas circulators driven by an electric motor.  The motor is driven by a three-

phase 50 Hz 11 kV power feed and the motors run at a lower slip frequency slightly above 49.5 Hz.  

Due to the operational requirements and how gas circulators are installed, the machines cannot be 

removed from service without a full reactor shutdown. 

 

The operational slip frequency is determined by the formula: 

 

� =
�� � ��

��
 ,                                                                             (1) 

where � is slip, � represents synchronous power grid frequency while �� is mechanical frequency of 

the rotor [2].  

 

Based on this expression, slip is the measurement of the difference between the rotor and stator input 

current.  As motor speed increases to synchronous machine speed, the load on the motor decreases 

[3].  For safety reasons, the gas circulator motors run at very light loads, resulting in very low slip 

motors.  However, as machine operation changes, factors such as Inlet Guide Vane (IGV) angles or 

reactor refuelling can alter the load on the motor affecting the slip frequency.   

 

The vibration signal problem experienced on-site is the significant swamping of the machine vibration 

signal by the adjacent power drive cabling, which historically has masked the vibration signal [4].  At 

the same time, it is impossible for many vibration monitoring systems to distinguish between 50 Hz 

and 49.5 Hz due to the available resolution of the fast Fourier transform (FFT). 

 

Beran has previously supplied analogue condition monitoring amplifiers which suppressed the 50 Hz 

noise generated by the electric drive signal allowing machinery diagnostic engineers the ability to see 

the gas circulator vibration signal.  Advances in digital signal processing, computing power and 

development of algorithms allowed for new and novel technologies to be used, to determine machine 

faults and provide advanced warning resulting in improving machinery safety and reliability for asset 

owners, operators, and engineers. 

 

Extensive prior work has identified the slip frequency as being challenging to identify and remove [5-

7], particularly in the presence of broken rotor fault bars embedded within the electrical machine.  

Many of the approaches in the literature aim to address this issue through fixed frequency spectral 

line removal using the wavelet transform [8-10].  This approach is entirely understandable given the 

wavelet transform can be formed to remove individual spectral components aligned with the shape 

of the mother wavelet [11-13].  Our study looked at using an array of techniques to resolve the issue 

of the power signal overriding the vibration signal, including continuous wavelet transform, adaptive 

frequencies, modified Kalman filters and spectral subtraction resulting in the spike removal of 50 Hz 

caused by the mains generation.  The advantage of this approach is to track any variation in the 

underlying grid carrier frequency which is known to change under variable grid loading. 
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Data acquisition 

 

To acquire data for the research, signals were collected from Gas Circulators installed at EDF Energy 

Torness Nuclear Power Station using Prosig P8000 and Prosig DATS application software.  Current 

clamps were applied to the three-phase motor power drive of the Gas Circulator, with data collected 

from the current clamps and installed vibration sensors. 

 

The real machine-acquired data was run through machine simulations and algorithms that had been 

created and modified in MATLAB, where the closely coupled power grid frequencies present in the 

vibration signal were able to be removed allowing the true dynamic response signature of the 

induction motor to be observed.   

 

Algorithm development 

 

To support the works, a continuous wavelet transform was applied as a pre-filter, which is an 

alternative to a bandpass infinite impulse response (IIR) filter, in the analysis of the acceleration 

vibration data.  The continuous wavelet transform is a signal processing method which processes the 

signal into multiple overlapping frequency bands from 0 Hz to the Nyquist frequency.  Figure 1 shows 

the FFT of the vibration signal before the pre-filtering, FFT after pre-filtering, application of the 

continuous wavelet transformation and comparison to the 4th Order Butterworth filter output.  The 

benefit of using the continuous wavelet transform is that more of the unwanted frequencies are 

removed from the signal and the signal is not subjected to a phase change.  

 

 
Figure 1: FFT of the vibration signal before the pre-filtering, FFT after pre-filtering, application of the continuous wavelet 

transformation and comparison to the 4th Order Butterworth filter output 

Using a model to estimate the output of a system that is not possible to directly measure resulted in 

the selection of the Kalman filter technique to enable comparison between anticipated and measured 

data [14-16].  Scaling factors were applied to extract filtered data from the Kalman filter.  The Kalman 

filter allows for the signal input into a system with noise to be compared with the output of an 

estimator removing the noise from the system, essentially providing two outputs, consisting of the 

noisy output and the filtered output. 
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The Kalman filter rapidly synchronises with the expected output with minimal errors in the 

computations.  The frequency domain shows the reduction in the magnitude of the power frequency 

when the noise was removed as shown in Figure 2. 

 

 
Figure 2: top image shows the FFT of data input to the Kalman filter, bottom image shows output of the Kalman filter 

successfully removing 50 Hz power drive signal 

Alternatively, as the unwanted portions in the vibration signals were directly caused by the 

interference from the input currents, it may also be possible to simply subtract some modified versions 

of the input current signals from the vibration signals so that these interferences could be removed, 

which is a typical application of spectral subtraction [17-21].  This approach would yield a 

straightforward and computationally efficient solution that is ideal given the limited computational 

capability of the current on-site equipment. 

To achieve this, both the amplitudes and the phases of the input signals needed to be adjusted.  There 

existed three input current signals with overall almost identical characteristics.  Each of the three 

signals may be used independently while major differences should not be expected. 

Using the measured current signals, the input frequency could be calculated conveniently first.  The 

amplitudes of the signals, including the input signals and the vibration signals, were then extracted at 

the determined input frequency.  For each of the three input signals, its amplitude could then be 

scaled accordingly.  Similarly, the respective phase angles at the input frequency could be obtained as 

well, after which the phase angles of the modified input signals could also be adjusted to match those 

of the vibration signals.   

Eventually, a modified version of each input signal was generated for every individual vibration signal.  

This modified input signal could simply be subtracted and so the interference caused by the input 

current to the measured vibration data could be eliminated.   
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To demonstrate the robustness of this approach, the results of four vibration signals using three input 

current signals are to be presented.  With each input signal, four modified versions would be 

generated to match the amplitudes and phases of the four vibration signals.  Each modified signal 

would then be subtracted from the corresponding vibration signal.  With three input current signals, 

three sets of results would be obtained.  The frequency spectra of the vibration signals before and 

after the subtraction are shown in Figures 3 and 4. 

 

  
(a)                                                                                                   (b) 

  

(c)                                                                                                   (d) 

Figure 3: The four raw vibration signals in the frequency domain before the subtraction. 

By comparing the raw vibration signals in Figure 3 with the results in Figure 4, the peaks at the input 

frequency (50.06 Hz) have been noticeably reduced while the characteristics including the magnitude 

and shape of the other regions of the signals were mostly unchanged.   

It could also be observed that using the three different input signals yielded slightly different results.  

When the third input signal was utilised for the subtraction, the overall quality of the results appeared 

to be higher.  It was additionally validated that the calculations were completed correctly, so the 

differences in the results should be attributed to the slight but still existent discrepancies among the 

input signals, which were likely caused by factors such as noise during the data collection.   

Nevertheless, using this modification and subtraction approach, it was demonstrated that the peaks 

at the input frequency were reduced effectively at a very low computational cost. 
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(a)                                                            (b)                                                             (c) 

   

(d)                                                            (e)                                                             (f) 

   

(g)                                                            (h)                                                             (i) 

   

(j)                                                            (k)                                                             (l) 

Figure 4: The (a)-(c) first, (d)-(f) second, (g)-(i) third and (j)-(l) fourth vibration signals in the frequency domain after the 

subtraction using the first, second and third input signals. 

 

Practical implementation 

 

The theoretical modelling and calculations performed in MATLAB showed that the power drive noise 

signal could be successfully removed from the vibration signals.   

 

The next step was to embed the algorithms into Beran’s PlantProtech Condition Monitoring System 

and proved the functionality of the algorithms can be applied to both a real instrument and a real-life 

complex machine. 

 

Data was acquired from existing installed vibration sensors and a power clamp was applied to the 

input motor drive power connection. 

 

Beran’s PlantProtech Condition Monitoring System with the embedded mSTATE algorithms 

successfully removed the noise from the motor power drive.  

 

Figure 5 shows the uncorrected machine vibration data with a significant 50 Hz component while 

Figure 6 demonstrates the output following the application of the embedded algorithms which 

successfully removed the 50 Hz Power Drive signal from the vibration data. 
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Figure 5: existing vibration data from Gas Circulator 

 
Figure 6: Gas circulator corrected vibration data with 50 Hz power drive noise removed 

 

Discussion 

 

As shown in Figures 5 and 6 the carrier signal at the underlying grid frequency is completely removed 

via this process, enabling identification of the adjacent slip frequencies emanating from rotor motion 

lagging the carrier signal.  The advantage of this approach is that subsequent analysis of any potential 

degradation of the rotor cage becomes possible by close inspection of eddy current behaviour at these 

discrete frequencies. 

 

Other areas of consideration which are beyond the initial scope of this work are to apply the tools to 

synchronous motors where coupled behaviour may interfere further with individual machine 

response.  Furthermore, the approach can easily be adopted to achieve signal noise cancellation in 
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other vibration signals where rotating machinery may be operating at a different speed which is not 

necessarily coupled to the host machine response, and noise cancellation in signals of other 

frequencies such as multiple harmonics of the fundamental carrier signal. 

 

Conclusion 

 

A practical tool has been deployed to remove problematic slip frequencies to assist the analysis of 

closely aligned frequencies in electrical machines.  The approach has been demonstrated on three-

phase 50 Hz 11 kV gas circulator data from Torness Power Station in the UK.   

 

The mState project has delivered a novel algorithm that allows complete subtraction of 50 Hz mains 

frequencies from the sensor signals allowing, for the first time, end users to visualise the true vibration 

signals. By removing noise from the signal with very low computational costs, the capability now exists 

to trend machine health over time without the use of specialist analogue signal conditioning systems. 
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